Does diffusion-tensor MR imaging provide accurate tracing of specific white matter tracts that correspond to actual anatomic and functional units in the central nervous system?

TitleDoes diffusion-tensor MR imaging provide accurate tracing of specific white matter tracts that correspond to actual anatomic and functional units in the central nervous system?
Publication TypeJournal Article
Year of Publication2008
AuthorsKim S, Melhem ER
JournalRadiology
Volume249
Issue3
Pagination725-7
Date Published2008 Dec
ISSN1527-1315
KeywordsAnimals, Callithrix, Central Nervous System, Diffusion Magnetic Resonance Imaging, Visual Pathways
Abstract

By using healthy common marmoset monkeys, Yamada et al traced the retinogeniculate pathways with ultra high-spatial-resolution manganese-enhanced magnetic resonance (MR) imaging and diffusion-tensor imaging at 7 T. Both methods were compared with morphologic findings described in published histopathologic studies. Both methods provided identical tracing of the optic nerve, optic chiasm, and optic tracts to the level of the lateral geniculate nucleus (LGN), faithfully reproducing the crossing of the nasal portion of the optic nerve at the level of the chiasm into the contralateral optic tract. This study strongly suggests that diffusion-tensor imaging, a noninvasive method that can be used in human research and clinical practice, has the potential to provide accurate tracing of specific white matter tracts that correspond to actual anatomic and functional units in the central nervous system.

DOI10.1148/radiol.2493081531
Alternate JournalRadiology
PubMed ID19011176
Related Institute: 
MRI Research Institute (MRIRI)

Weill Cornell Medicine
Department of Radiology
525 East 68th Street New York, NY 10065