Targeting of radiolabeled J591 antibody to PSMA-expressing tumors: optimization of imaging and therapy based on non-linear compartmental modeling.

TitleTargeting of radiolabeled J591 antibody to PSMA-expressing tumors: optimization of imaging and therapy based on non-linear compartmental modeling.
Publication TypeJournal Article
Year of Publication2016
AuthorsFung EK, Cheal SM, Fareedy SB, Punzalan B, Beylergil V, Amir J, Chalasani S, Weber WA, Spratt DE, Veach DR, Bander NH, Larson SM, Zanzonico PB, Osborne JR
JournalEJNMMI Res
Volume6
Issue1
Pagination7
Date Published2016 Dec
ISSN2191-219X
Abstract

BACKGROUND: We applied a non-linear immunokinetic model to quantitatively compare absolute antibody uptake and turnover in subcutaneous LNCaP human prostate cancer (PCa) xenografts of two radiolabeled forms of the humanized anti-prostate-specific membrane antigen (PSMA) monoclonal antibody J591 ((124)I-J591 and (89)Zr-J591). Using the model, we examined the impact of dose on the tumor and plasma positron emission tomography (PET)-derived time-activity curves. We also sought to predict the optimal targeting index (ratio of integrated-tumor-to-integrated-plasma activity concentrations) for radioimmunotherapy.

METHODS: The equilibrium rates of antibody internalization and turnover in the tumors were derived from PET images up to 96 h post-injection using compartmental modeling with a non-linear transfer rate. In addition, we serially imaged groups of LNCaP tumor-bearing mice injected with (89)Zr-J591 antibody doses ranging from antigen subsaturating to saturating to examine the suitability of using a non-linear approach and derived the time-integrated concentration (in μM∙hours) of administered tracer in tumor as a function of the administered dose of antibody.

RESULTS: The comparison of (124)I-J591 and (89)Zr-J591 yielded similar model-derived values of the total antigen concentration and internalization rate. The association equilibrium constant (k a) was twofold higher for (124)I, but there was a ~tenfold greater tumoral efflux rate of (124)I from tumor compared to that of (89)Zr. Plots of surface-bound and internalized radiotracers indicate similar behavior up to 24 h p.i. for both (124)I-J591 and (89)Zr-J591, with the effect of differential clearance rates becoming apparent after about 35 h p.i. Estimates of J591/PSMA complex turnover were 3.9-90.5 × 10(12) (for doses from 60 to 240 μg) molecules per hour per gram of tumor (20 % of receptors internalized per hour).

CONCLUSIONS: Using quantitative compartmental model methods, surface binding and internalization rates were shown to be similar for both (124)I-J591 and (89)Zr-J591 forms, as expected. The large difference in clearance rates of the radioactivity from the tumor is likely due to differential trapping of residualizing zirconium versus non-residualizing iodine. Our non-linear model was found to be superior to a conventional linear model. This finding and the calculated activity persistence time in tumor have important implications for radioimmunotherapy and other antibody-based therapies in patients.

DOI10.1186/s13550-016-0164-0
Alternate JournalEJNMMI Res
PubMed ID26801327
PubMed Central IDPMC4723373
Grant ListP50 CA086438 / CA / NCI NIH HHS / United States
R25 CA096945 / CA / NCI NIH HHS / United States
P50 CA092629 / CA / NCI NIH HHS / United States
P30 CA008748 / CA / NCI NIH HHS / United States
R21 CA153177 / CA / NCI NIH HHS / United States
R24 CA083084 / CA / NCI NIH HHS / United States
Related Institute: 
Molecular Imaging Innovations Institute (MI3)

Weill Cornell Medicine
Department of Radiology
525 East 68th Street New York, NY 10065