Quantitative evaluation of brain iron accumulation in different stages of Parkinson's disease.

TitleQuantitative evaluation of brain iron accumulation in different stages of Parkinson's disease.
Publication TypeJournal Article
Year of Publication2022
AuthorsLi KR, Avecillas-Chasin J, Nguyen TD, Gillen KM, Dimov A, Chang E, Skudin C, Kopell BH, Wang Y, Shtilbans A
JournalJ Neuroimaging
Volume32
Issue2
Pagination363-371
Date Published2022 03
ISSN1552-6569
KeywordsBrain, Cross-Sectional Studies, Humans, Iron, Magnetic Resonance Imaging, Parkinson Disease, Substantia Nigra
Abstract

BACKGROUND AND PURPOSE: Excessive brain iron deposition is involved in Parkinson's disease (PD) pathogenesis. However, the correlation of iron accumulation in various brain nuclei is not well-established in different stages of the disease. This cross-sectional study aims to evaluate quantitative susceptibility mapping (QSM) as an imaging technique to measure brain iron accumulation in PD patients in different stages compared to healthy controls.

METHODS: Ninety-six PD patients grouped by their Hoehn and Yahr (H&Y) stages and 31 healthy controls were included in this analysis. The magnetic susceptibility values of the substantia nigra (SN), red nucleus (RN), caudate, putamen, and globus pallidus were obtained and compared.

RESULTS: Iron level was increased in the SN of PD patients in all stages versus controls (p < .001), with no significant difference within stages. Iron in the RN was significantly increased in stage II versus controls (p = .013) and combined stages III and IV versus controls (p < .001). The iron levels in caudate, putamen, and globus pallidus were not different between any groups.

CONCLUSIONS: Our data suggest iron accumulation occurs early in the disease course and only in the SN and RN of these patients. This is a large cross-sectional study of brain iron deposition in PD patients according to H&Y staging. Prospective studies are warranted to further validate QSM as a method to follow brain iron, which could serve as a disease biomarker and a therapeutic target.

DOI10.1111/jon.12957
Alternate JournalJ Neuroimaging
PubMed ID34904328
Grant ListR01 NS095562 / NS / NINDS NIH HHS / United States
Related Institute: 
MRI Research Institute (MRIRI)

Weill Cornell Medicine
Department of Radiology
525 East 68th Street New York, NY 10065