Preclinical Evaluation of a Lead Specific Chelator (PSC) Conjugated to Radiopeptides for 203Pb and 212Pb-Based Theranostics.

TitlePreclinical Evaluation of a Lead Specific Chelator (PSC) Conjugated to Radiopeptides for 203Pb and 212Pb-Based Theranostics.
Publication TypeJournal Article
Year of Publication2023
AuthorsLi M, Baumhover NJ, Liu D, Cagle BS, Boschetti F, Paulin G, Lee D, Dai Z, Obot ER, Marks BM, Okeil I, Sagastume EA, Gabr M, F Pigge C, Johnson FL, Schultz MK
JournalPharmaceutics
Volume15
Issue2
Date Published2023 Jan 26
ISSN1999-4923
Abstract

203Pb and 212Pb have emerged as promising theranostic isotopes for image-guided α-particle radionuclide therapy for cancers. Here, we report a cyclen-based Pb specific chelator (PSC) that is conjugated to tyr3-octreotide via a PEG2 linker (PSC-PEG-T) targeting somatostatin receptor subtype 2 (SSTR2). PSC-PEG-T could be labeled efficiently to purified 212Pb at 25 °C and also to 212Bi at 80 °C. Efficient radiolabeling of mixed 212Pb and 212Bi in PSC-PEG-T was also observed at 80 °C. Post radiolabeling, stable Pb(II) and Bi(III) radiometal complexes in saline were observed after incubating [203Pb]Pb-PSC-PEG-T for 72 h and [212Bi]Bi-PSC-PEG-T for 5 h. Stable [212Pb]Pb-PSC-PEG-T and progeny [212Bi]Bi-PSC-PEG-T were identified after storage in saline for 24 h. In serum, stable radiometal/radiopeptide were observed after incubating [203Pb]Pb-PSC-PEG-T for 55 h and [212Pb]Pb-PSC-PEG-T for 24 h. In vivo biodistribution of [212Pb]Pb-PSC-PEG-T in tumor-free CD-1 Elite mice and athymic mice bearing AR42J xenografts revealed rapid tumor accumulation, excellent tumor retention and fast renal clearance of both 212Pb and 212Bi, with no in vivo redistribution of progeny 212Bi. Single-photon emission computed tomography (SPECT) imaging of [203Pb]Pb-PSC-PEG-T and [212Pb]Pb-PSC-PEG-T in mice also demonstrated comparable accumulation in AR42J xenografts and renal clearance, confirming the theranostic potential of the elementally identical 203Pb/212Pb radionuclide pair.

DOI10.3390/pharmaceutics15020414
Alternate JournalPharmaceutics
PubMed ID36839736
PubMed Central IDPMC9966725
Grant ListP30 CA086862 / CA / NCI NIH HHS / United States
N44CA170036; R44CA203430 / CA / NCI NIH HHS / United States
Related Institute: 
Molecular Imaging Innovations Institute (MI3)

Weill Cornell Medicine
Department of Radiology
525 East 68th Street New York, NY 10065