Evaluation of iron content in human cerebral cavernous malformation using quantitative susceptibility mapping.

TitleEvaluation of iron content in human cerebral cavernous malformation using quantitative susceptibility mapping.
Publication TypeJournal Article
Year of Publication2014
AuthorsTan H, Liu T, Wu Y, Thacker J, Shenkar R, Mikati AGhani, Shi C, Dykstra C, Wang Y, Prasad PV, Edelman RR, Awad IA
JournalInvest Radiol
Volume49
Issue7
Pagination498-504
Date Published2014 Jul
ISSN1536-0210
KeywordsAdult, Aged, Biomarkers, Brain Neoplasms, Female, Hemangioma, Cavernous, Central Nervous System, Humans, Image Interpretation, Computer-Assisted, Iron, Magnetic Resonance Imaging, Male, Middle Aged, Reproducibility of Results, Sensitivity and Specificity
Abstract

OBJECTIVES: The aims of this study were to investigate and validate quantitative susceptibility mapping (QSM) for lesional iron quantification in cerebral cavernous malformations (CCMs).

MATERIALS AND METHODS: Magnetic resonance imaging studies were performed in phantoms and 16 patients on a 3-T scanner. Susceptibility weighted imaging, QSM, and R2* maps were reconstructed from in vivo data acquired with a 3-dimensional, multi-echo, and T2*-weighted gradient echo sequence. Magnetic susceptibility measurements were correlated to susceptibility weighted imaging and R2* results. In addition, iron concentrations from surgically excised CCM lesion specimens were determined using inductively coupled plasma mass spectrometry and correlated with QSM measurements.

RESULTS: The QSM images demonstrated excellent image quality for depicting CCM lesions in both sporadic and familial cases. Susceptibility measurements revealed a positive linear correlation with R2* values (R(2) = 0.99 for total, R(2) = 0.69 for mean; P < 0.01). Quantitative susceptibility mapping values of known iron-rich brain regions matched closely with those of previous studies and in interobserver consistency. A strong correlation was found between QSM and the concentration of iron phantoms (0.925; P < 0.01), as well as between QSM and mass spectroscopy estimation of iron deposition (0.999 for total iron, 0.86 for iron concentration; P < 0.01) in 18 fragments of 4 excised human CCM lesion specimens.

CONCLUSIONS: The ability of QSM to evaluate iron deposition in CCM lesions was illustrated via phantom, in vivo, and ex vivo validation studies. Quantitative susceptibility mapping may be a potential biomarker for monitoring CCM disease activity and response to treatments.

DOI10.1097/RLI.0000000000000043
Alternate JournalInvest Radiol
PubMed ID24619210
PubMed Central IDPMC4254705
Grant ListR01 NS072370 / NS / NINDS NIH HHS / United States
R43 EB015293 / EB / NIBIB NIH HHS / United States
UL1 TR000430 / TR / NCATS NIH HHS / United States
1R43EB015293-01A1 / EB / NIBIB NIH HHS / United States
Related Institute: 
MRI Research Institute (MRIRI)

Weill Cornell Medicine
Department of Radiology
525 East 68th Street New York, NY 10065