Arterial anatomy of the talus: a cadaver and gadolinium-enhanced MRI study.

TitleArterial anatomy of the talus: a cadaver and gadolinium-enhanced MRI study.
Publication TypeJournal Article
Year of Publication2010
AuthorsPrasarn ML, Miller AN, Dyke JP, Helfet DL, Lorich DG
JournalFoot Ankle Int
Volume31
Issue11
Pagination987-93
Date Published2010 Nov
ISSN1071-1007
KeywordsAdult, Aged, Angiography, Digital Subtraction, Arteries, Cadaver, Gadolinium, Humans, Magnetic Resonance Imaging, Middle Aged, Talus, Young Adult
Abstract

BACKGROUND: Avascular necrosis following a fracture of the talar neck may be secondary to the injury itself, or may result from the surgical approach and exposure during treatment. We sought to define the arterial anatomy of the talus using gadolinium-enhanced magnetic resonance imaging (MRI) and through gross dissection following latex injection of cadaver limbs. The use of gadolinium-enhanced MRI for the evaluation of the arterial supply of the talus has not been previously reported.

METHODS AND MATERIALS: We utilized 12 fresh frozen cadaver limbs to study the arterial anatomy of the talus. The anterior tibial, posterior tibial, and peroneal arteries were isolated and cannulated with polyethylene catheters. Gadolinium was injected into the cannulas, and conventional MRI sequences including suppressed and unsuppressed 3D gradient echo sequences obtained. Following MRI, latex was injected into the cannulas and gross dissection performed. In addition, the vascular constraints to anteromedial and anterolateral approaches to the talus were defined.

RESULTS: MRI proved useful in the present study to confirm the presence of specific arterial branches in situ, as well as to demonstrate the rich anastomotic network in and around the talus. A branch to the medial talar neck that has not been previously identified is described which was found in nine of the specimens. This newly described branch to the medial talar neck was consistently noted to be lacerated following a standard anteromedial approach to the talus.

CONCLUSION: The use of gadolinium-enhanced MRI provided very detailed images demonstrating a rich and complex anastomotic arterial network that surrounds and perforates the talus.

CLINICAL RELEVANCE: A thorough understanding of the anatomy and meticulous dissection are essential to prevent unnecessary further injury to the vasculature when treating fractures of the talus.

DOI10.3113/FAI.2010.0987
Alternate JournalFoot Ankle Int
PubMed ID21189192
Related Institute: 
MRI Research Institute (MRIRI)

Weill Cornell Medicine
Department of Radiology
525 East 68th Street New York, NY 10065