Mechanical compression of cartilage explants induces multiple time-dependent gene expression patterns and involves intracellular calcium and cyclic AMP.

TitleMechanical compression of cartilage explants induces multiple time-dependent gene expression patterns and involves intracellular calcium and cyclic AMP.
Publication TypeJournal Article
Year of Publication2004
AuthorsFitzgerald JB, Jin M, Dean D, Wood DJ, Zheng MH, Grodzinsky AJ
JournalJ Biol Chem
Volume279
Issue19
Pagination19502-11
Date Published2004 May 07
ISSN0021-9258
KeywordsADAM Proteins, ADAMTS4 Protein, Animals, Cartilage, Cartilage, Articular, Cattle, Chondrocytes, Cluster Analysis, Collagen, Collagenases, Cyclic AMP, Cyclic AMP-Dependent Protein Kinase Type II, Cyclic AMP-Dependent Protein Kinases, Cyclooxygenase 2, Egtazic Acid, Gene Expression Regulation, Isoenzymes, Kinetics, Matrix Metalloproteinase 13, Matrix Metalloproteinase 3, Matrix Metalloproteinase 9, Metalloendopeptidases, Models, Genetic, Procollagen N-Endopeptidase, Prostaglandin-Endoperoxide Synthases, Reverse Transcriptase Polymerase Chain Reaction, RNA, RNA, Messenger, Signal Transduction, Stress, Mechanical, Tensile Strength, Time Factors, Transcription, Genetic, Up-Regulation
Abstract

Chondrocytes are influenced by mechanical forces to remodel cartilage extracellular matrix. Previous studies have demonstrated the effects of mechanical forces on changes in biosynthesis and mRNA levels of particular extracellular matrix molecules, and have identified certain signaling pathways that may be involved. However, the broad extent and kinetics of mechano-regulation of gene transcription has not been studied in depth. We applied static compressive strains to bovine cartilage explants for periods between 1 and 24 h and measured the response of 28 genes using real time PCR. Compression time courses were also performed in the presence of an intracellular calcium chelator or an inhibitor of cyclic AMP-activated protein kinase A. Cluster analysis of the data revealed four main expression patterns: two groups containing either transiently up-regulated or duration-enhanced expression profiles could each be subdivided into genes that did or did not require intracellular calcium release and cyclic AMP-activated protein kinase A for their mechano-regulation. Transcription levels for aggrecan, type II collagen, and link protein were up-regulated approximately 2-3-fold during the first 8 h of 50% compression and subsequently down-regulated to levels below that of free-swelling controls by 24 h. Transcription levels of matrix metalloproteinases-3, -9, and -13, aggrecanase-1, and the matrix protease regulator cyclooxygenase-2 increased with the duration of 50% compression 2-16-fold by 24 h. Thus, transcription of proteins involved in matrix remodeling and catabolism dominated over anabolic matrix proteins as the duration of static compression increased. Immediate early genes c-fos and c-jun were dramatically up-regulated 6-30-fold, respectively, during the first 8 h of 50% compression and remained up-regulated after 24 h.

DOI10.1074/jbc.M400437200
Alternate JournalJ Biol Chem
PubMed ID14960571
Grant ListAR 33236 / AR / NIAMS NIH HHS / United States
Related Institute: 
Molecular Imaging Innovations Institute (MI3)

Weill Cornell Medicine
Department of Radiology
525 East 68th Street New York, NY 10065