Association of Brain Age, Lesion Volume, and Functional Outcome in Patients With Stroke.

TitleAssociation of Brain Age, Lesion Volume, and Functional Outcome in Patients With Stroke.
Publication TypeJournal Article
Year of Publication2023
AuthorsLiew S-L, Schweighofer N, Cole JH, Zavaliangos-Petropulu A, Lo BP, Han LKM, Hahn T, Schmaal L, Donnelly MR, Jeong JN, Wang Z, Abdullah A, Kim JH, Hutton A, Barisano G, Borich MR, Boyd LA, Brodtmann A, Buetefisch CM, Byblow WD, Cassidy JM, Charalambous CC, Ciullo V, Conforto ABastos, Dacosta-Aguayo R, DiCarlo JA, Domin M, Dula AN, Egorova-Brumley N, Feng W, Geranmayeh F, Gregory CM, Hanlon CA, Hayward K, Holguin JA, Hordacre B, Jahanshad N, Kautz SA, Khlif MSalah, Kim H, Kuceyeski A, Lin DJ, Liu J, Lotze M, MacIntosh BJ, Margetis JL, Mataro M, Mohamed FB, Olafson ER, Park G, Piras F, Revill KP, Roberts P, Robertson AD, Sanossian N, Schambra HM, Seo NJin, Soekadar SR, Spalletta G, Stinear CM, Taga M, Tang WKwong, Thielman GT, Vecchio D, Ward NS, Westlye LT, Winstein CJ, Wittenberg GF, Wolf SL, Wong KA, Yu C, Cramer SC, Thompson PM
JournalNeurology
Volume100
Issue20
Paginatione2103-e2113
Date Published2023 May 16
ISSN1526-632X
KeywordsAged, Brain, Cross-Sectional Studies, Humans, Magnetic Resonance Imaging, Neuroimaging, Stroke
Abstract

BACKGROUND AND OBJECTIVES: Functional outcomes after stroke are strongly related to focal injury measures. However, the role of global brain health is less clear. In this study, we examined the impact of brain age, a measure of neurobiological aging derived from whole-brain structural neuroimaging, on poststroke outcomes, with a focus on sensorimotor performance. We hypothesized that more lesion damage would result in older brain age, which would in turn be associated with poorer outcomes. Related, we expected that brain age would mediate the relationship between lesion damage and outcomes. Finally, we hypothesized that structural brain resilience, which we define in the context of stroke as younger brain age given matched lesion damage, would differentiate people with good vs poor outcomes.

METHODS: We conducted a cross-sectional observational study using a multisite dataset of 3-dimensional brain structural MRIs and clinical measures from the ENIGMA Stroke Recovery. Brain age was calculated from 77 neuroanatomical features using a ridge regression model trained and validated on 4,314 healthy controls. We performed a 3-step mediation analysis with robust mixed-effects linear regression models to examine relationships between brain age, lesion damage, and stroke outcomes. We used propensity score matching and logistic regression to examine whether brain resilience predicts good vs poor outcomes in patients with matched lesion damage.

RESULTS: We examined 963 patients across 38 cohorts. Greater lesion damage was associated with older brain age (β = 0.21; 95% CI 0.04-0.38, p = 0.015), which in turn was associated with poorer outcomes, both in the sensorimotor domain (β = -0.28; 95% CI -0.41 to -0.15, p < 0.001) and across multiple domains of function (β = -0.14; 95% CI -0.22 to -0.06, p < 0.001). Brain age mediated 15% of the impact of lesion damage on sensorimotor performance (95% CI 3%-58%, p = 0.01). Greater brain resilience explained why people have better outcomes, given matched lesion damage (odds ratio 1.04, 95% CI 1.01-1.08, p = 0.004).

DISCUSSION: We provide evidence that younger brain age is associated with superior poststroke outcomes and modifies the impact of focal damage. The inclusion of imaging-based assessments of brain age and brain resilience may improve the prediction of poststroke outcomes compared with focal injury measures alone, opening new possibilities for potential therapeutic targets.

DOI10.1212/WNL.0000000000207219
Alternate JournalNeurology
PubMed ID37015818
PubMed Central IDPMC10186236
Grant ListP30 CA016086 / CA / NCI NIH HHS / United States
Related Institute: 
Brain Health Imaging Institute (BHII)

Weill Cornell Medicine
Department of Radiology
525 East 68th Street New York, NY 10065